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A Block)
Define polynomials Fn(x) by the following:

Fn(x) = (−1)n(1 + x2)2e
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, n = 1, 2, 3, . . . ,

The polynomials {Fn(x)} arose when studying an example of potential of
the anharmonic oscillator which has an equidistant spectrum.
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and satisfy the following:
Fn(x) = Hen+2(x) + 2(n + 2)Hen(x) + (n + 2)(n− 1)Hen−2(x)

where Hen(x) is the n-th monic Hermite polynomial.

Some math
1 + 1 = 2

Another Block
The polynomials {Fn(x)} are orthogonal in the sense that∫ ∞

−∞
Fn(x)Fm(x)

e−
x2

2

(1 + x2)2
dx = (n− 1)(n− 1)!(2π)

1
2δn,m

for any nonnegative integers n and m, where δn,m is the Kronecker delta.
The {Fn(x)} are solutions to the following differential equation:
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Another Block
Exceptional Orthogonal Polynomials are families of polynomials
which

1 Form a sequence of orthogonal polynomials with finitely many
missing degrees.

2 Are eigenfunctions of a second order differential operator.
3 Are complete in their corresponding weighted L2 space.

Example
Here’s an example.

A Block
Let {Pn(x)} be a monic OPS with respect to a symmetric measure dµ(x)
supported on R. We will consider a sequence of polynomials Rn(x)
defined as

Rn(x) := Pn+2(x) + AnPn(x) +BnPn−2(x), R0(x) := 1,

for sequences {An} and {Bn} of real numbers such that
i R′

n(i) = 0 for all n ≥ 1
ii

∫∞
−∞R0(x)Rn(x)

dµ(x)
(1+x2)2 = 0 for all n ≥ 1

iii
∫∞
−∞R1(x)Rn(x)

dµ(x)
(1+x2)2 = 0 for all n ≥ 2

Enumerate some math:
1 Rn(x) polynomial of degree n + 2.
2 R′

n(−i) = 0.
3 The sequence {Rn(x)} does not contain a degree 1 or 2 polynomial.

Alert Block
The polynomials Rn(x) are orthogonal with respect to dµ(x)

(1+x2)2 i.e.∫ ∞

−∞
Rn(x)Rm(x)

dµ(x)

(1 + x2)2
= 0

for n ̸= m and is nonzero for m = n.

Let {Pn(x)} be a family of symmetric orthogonal polynomials. Then they
satisfy a 3-term recurrence relation which corresponds to the monic Jacobi
matrix

J =


0 1 0 · · ·
a1 0 1
0 a2 0 . . .
... . . . . . .


i.e

JP(x) = xP(x),

where P(x) = (P0(x), P1(x), P2(x), . . . )
⊤.

Another Alert Block
Big Theorem

More text.

Example
Let T̂n(x) denote the n-th monic Chebyshev polynomial.

Alert Block in an Example Block
There exists sequences of real numbers {An} and {Bn} such that the
polynomials Rn(x) := T̂n+2(x) + AnT̂n(x) +BnT̂n−2(x) satisfy

1 R′
n(i) = 0 for all n = 1, 2, . . .

2
∫ 1

−1
R0(x)Rn(x)√
1−x2(1+x2)2

dx = 0 for all n = 1, 2, . . .

3
∫ 1

−1
R1(x)Rn(x)√
1−x2(1+x2)2

dx = 0 for all n = 2, 3, . . .

where R0(x) := 1.

Below you can put a picture:
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Figure: Caption 1
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